Production and Characterization of Lutein Nano-emulsion

Cindy Vang¹, Chong Tai Kim² and Eun Joo Lee¹ ¹Department of Food and Nutrition, University of Wisconsin-Stout, Menomonie, WI 54751. ²Research Group of Convergence Technology, Korea Food Research Institute, Gyeonggi-do, 463-746, Korea.

Introduction

- Lutein, lipid soluble bioactive compound, can play an important role in eye health, including age-related macular degeneration and cataracts.
- Nano-emulsion technology incorporates lipid-soluble bioactive compounds like lutein in emulsion and enable the lipid-soluble compounds in various food matrices, including beverages.
- In addition, nano-emulsion (<100 nm droplet size) can improve the</p> functional stability of lutein, which is sensitive to light and oxygen, and deteriorates easily during processing and storage.

Objective

The objectives of this study were to evaluate 1) the optimal conditions for lutein nano-emulsion production, and 2) the physicochemical properties of lutein nano-emulsion.

Material and Methods

Preparation of lutein namo-emulsion

- Two lutein extracts, 95% purity (5 mg, powder form, Caymen Co.) and 20% purity (dissolved in safflower oil, 25 g, Kemin Co.), were purchased.
- Various emulsifiers were tested as surfactants and co-surfactants to establish the optimum formula.

Emulsifiers

Medium-chain triglycerides (MCTs)

Polyoxyethylene sorbitan monooleate (Tween 80)

Propylene glycol (PG)

Ethanol

Lecithin (extracted from soybean)

Sucrose monostearate (SM)

- Lutein extract (95% or 20% purity), Tween 80, water, MCT, and ethanol were mixed as a pre-mixture prepared by modified selfassembly emulsification method.
- The mixture was stirred under moderate magnetic stirring for 12 hrs added with 0.01% butylated hydroxyanisole (BHA) and 0.05% sodium azide to prevent oxidation and deterioration.
- Pre-mixture was added in drops into aqueous phase with moderate magnetic stirring and then kept stirring for 1 hr.

UNIVERSITY OF WISCONSIN-STOUT · WISCONSIN'S POLYTECHNIC UNIVERSITY Inspiring Innovation. Learn more at www.uwstout.edu

*HLB: Hydrophilic/Lipophilic Balance

	HLB*	
	_	
	15	
	2.5	
	_	
	4	
	5.9	

passed through The coarse emulsion was an air-driven homogenizer, model M-110L; microfluidizer (high-pressure Microfluidics, Westwood, MA, USA) operating at 25,000 psi for three cycles.

Particle Size Distribution

Determined by Nanotrac 250 (Microtrac Inc., Montgomeryville, PA), which is a photon correlation spectroscopy and analyzes the fluctuations in light scattering due to the Brownian motion of the particles. Light scattering was monitored at 25 °C and an angle of 90°.

Electrophoretic Mobility

Determined by Zetasizer Nanoseries ZS (Malvern Instrument, Worcestershire, UK) to measure the direction and velocity that the nanoemulsion moved in the applied electric filed at 633 nm for 1 min. The Smoluchowsky mathematical model was used to convert the electrophoretic mobility into zeta potential values.

Microfluidizer

Particle size analyzer

Results and Discussion

- The most stable primary emulsion using 95% lutein purity was produced when lutein,, Tween 80, water, MCT and ethanol ratio was 0.1 : 5.9 : 47.0 : 35.2 : 11.8 (w/w).
- Lutein nano-emulsion appeared semi-transparent with light yellow color and high fluidity.
- The average particle size of lutein nano-emulsion was 65.8 nm, 77.9 nm, 80.2 nm, 81.5 nm, 87.0 nm and 99.0 nm at 0, 1, 2, 3, 4, and 5 week of storage, respectively.

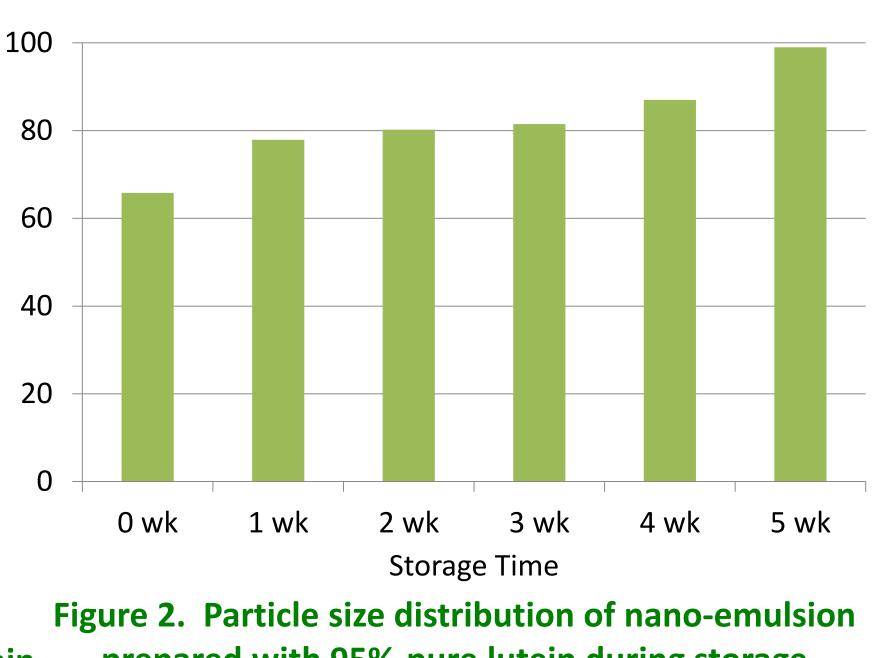


Figure 1. Nano-emulsion prepared with 95%-pure lutein

Zeta potential analyzer

prepared with 95%-pure lutein during storage

The zeta potential was -12.5, -11.4, -19.1, and -33.6 mV at 0, 1, 2, and 3 week of storage, respectively. (unmeasurable after 4 wk).

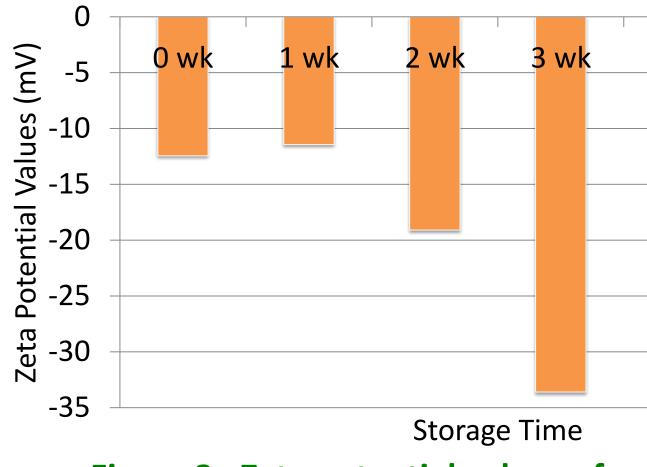


Figure 3. Zeta potential values of nano-emulsion prepared with 95%-pure lutein during storage

95%-pure lutein.

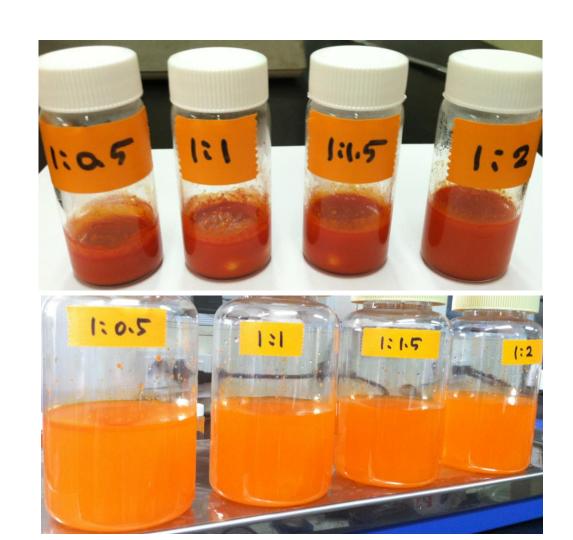


Figure 4. Pre-mixture (up) and nano-emulsion (down) of lutein (20% purity) prepared with different concentrations of Tween 80

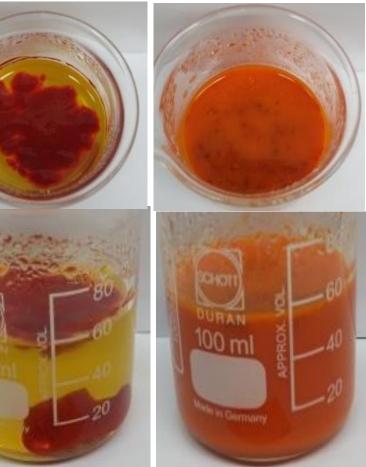
Conclusion

- potential to apply in cold-beverage production.
- longer storage time.

Acknowledgement

This research was supported by the University of Wisconsin-Stout Research Service (2014-2015 Student Research Grant, Project period: Nov. 1, 2014-May 14, 2015, Grant No.: 131-6-3830007).

References


nonionic oil-in-water microemulsions. International Journal of Pharmaceutics, 88, 417–422.

chemometric analysis of UV spectral data. J. Agr. Food Chem. 55: 5925-5933. bioactive components. Journal of Food Science, 72(8), R109–R124.

146.

4 wk 5 wk	+ + (Net) + + + (Net) + Electro-Negatively + Shear plane Charged Particle. + + Primary adsorbed ions establish the + surface charge + + + + + + + + + + + + + + + + + + +
	Stern Layer Diffuse layer Gauy - Chapman layer Copyright © 2006 Vince Goetsch (Zeta potential)

Nano-emulsion prepared with 20% purity lutein product showed natural orange carotenoid color, indicating that it requires different surfactants and co-surfactant formula than that prepared with

Figure 5. Pre-mixture of lutein (20% purity) with PG (left) or Lecithin (right) (1:1 w/w)

Figure 6. Nanoemulsions of lutein:MCT:Tween80 (up) and lutein:MCT :SM (down) (1:1:1 w/w)

Lutein nano-emulsion prepared with 95 %-pure lutein was relatively stable during the 3-week storage at 22°C and has a high

However, further study is needed to improve the storage stability of lutein nano-emulsion to be used in beverages that require

Attwood, D., Mallon, C., Ktistis, G., & Taylor, C. J. (1992). A study on factors influencing the droplet size in

Davis B, Markey E, Busch A, Busch W. (2007). Determination of capsaicinoids in habanero peppers by

McClements, D. J., Decker, E. A., & Weiss, J. (2007). Emulsion-based delivery systems for lipophilic

Yu W, Tabosa DE, Barrat ES, Fessi G, Devissaguet JP, Puisieux F. (1993). A novel approach to the preparation of injectable emulsions by spontaneous emulsification process. Int. J. Pharm. 89: 139-